《决策与信息》
文章摘要:经典ID3决策树算法适用于离散型数据分类,但用于连续处理时需要数据离散化容易导致信息损失。提出邻域等价关系从而诱导邻域ID3(NID3)决策树算法,NID3算法改进了ID3决策树算法,能够直接实施连续预测并获取更好分类效果。在邻域决策系统中,挖掘一种邻域等价关系;基于邻域等价粒化,构建邻域信息度量;基于邻域信息增益,设计NID3决策树算法。实例分析与数据实验均表明,NID3算法具有连续数据分类预测有效性,在分类机器学习中优越于ID3算法。
文章关键词:
项目基金: